

Scanning Thermal Microscopy (SThM): Nanoscale thermal measurements

Séverine Gomès

CNRS Professor

CETHIL, UMR5008 CNRS, INSA de Lyon,UCBL1, F-69621, Villeurbanne, France.

Context and motivation

- Micro and nanotechnologies
- New micro- and nano- structured materials & systems

• Many sectors of sciences and industry concerned

Life

Energy

Transport

IT

Communication

Electronics

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

Context and motivation

When d \downarrow : increasing impact of surface and interface / volume impact

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

Scanning Thermal Microscopy (SThM): Nanoscale thermal measurements

- 1. Instrumentation and modes
- 2. Influence factors on measurements (simple model) & methodologies used to calibrate the technique
- 3. SThM analysis of a nanostructure: main measurement steps
- 4. Conclusion and main challenges

Scanning Thermal Microscopy (SThM): Nanoscale thermal measurements

1. Instrumentation and modes

- 2. Influence factors on measurements (simple model) & methodologies used to calibrate the technique
- 3. SThM analysis of a nanostructure: main measurement steps
- 4. Conclusion and main challenges

SThM principle

Active mode

Air, vacuum (and liquid)

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

SThM principle

Environment

Air, vacuum (and liquid)

pressure lower than 10⁻² Torr

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

menisccus

Active mode

Sample

Some types of SThM probes

Annual review of materials science, 1999. 29(1): p. 505-585.

Fluorescent nanoparticle at the apex of the AFM tip

Journal of physics: conference series Volume: 92 Issue 1 (2007)

Bimaterial lever

Nano Lett. 2012. 12: p. 1218

Resistive SThM probes

$$R_p = R_{p0} (1 + \alpha_p (\overline{T}_p - T_{p0}))$$
 Metallic probe and sensor

Wollaston wire probe

புத் Lyon 1

C

SA

KelvinNanoTechnology (KNT)

Thermal lever (Si doped probe)

	WW probe	KNT probe	DS probe
Probe electrical resistanc (Ω)	~ 2.3	~ 350	~ 1200
Temperature coefficient of electrical resistance: α_p (.10 ⁻³ K ⁻¹)	~ 1.66	~ 1.2	~ 2.3 [350-550K]
Electrothermal sensitivity (Ω. K ⁻¹)	~ 0.004	~ 0.4	~ 2.8
Time thermal resolution (ms)	~ 5.2	$\begin{array}{c} \tau_{NiCr} \simeq 7 \\ \tau_{Pd} \simeq 0.2 \end{array}$	$\tau_1 \sim 14 \ \tau_2 \sim 0.26$

Indicative values

Calibration needed to determine them

Guen (E.) Thesis Université de Lyon (2020)

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

Thermal control units

Wheatstone bridge or differential bridge

Wheatstone bridge

- Passive and active modes by adjusting the electrical current through the tip sensor
- In the two modes:
 - o dc, ac or dc-ac regimes
 - \circ 3 ω SThM mode in active mode:

Lefèvre (S.) Thesis Université de Poitiers (2002)

SThM principle

SThM principle

C

பு

Lyon 1

Active mode

 $\bar{T}_p \cong 100^{\circ}C$ Ambient air conditions

TiC locally irradiated with heavy ions

 $\overline{T}_p \cong 100^{\circ}C$ Vacuum conditions

MoS₂ layers

Phys. Rev. Lett. 2013, 111, 205901

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

76 µm

76 µm

Simultaneous complementary analyses

Imaging	Topography, roughness	Thermal contrast
Point measurements	Probe-sample force	Probe temperature = f(probe-sample dist. & force)

+ Combined with other scanning probe microscopy modes: mechanical, electrical...

How to measure the thermal properties of a sample from S_{Th} ?

How to calibrate the technique for such measurements ?

Scanning Thermal Microscopy (SThM): Nanoscale thermal measurements

- **1.** Instrumentation and modes
- 2. Influence factors on measurements (simple model) & methodologies used to calibrate the technique
- 3. SThM analysis of a nanostructure: main measurement steps
- 4. Conclusion and main challenges

Influence factors

Simplified Ishikawa's diagram for $S_{th} \propto \Delta R_p \propto \Delta \overline{T}_p$ FOR A GIVEN PROBE

Calibration of probe sensor

Different strategies

 $\begin{bmatrix} R_{l0} \\ R_{sensor,T0} \end{bmatrix}$ measured when possible or calculated with known dimensions of the probe components \rightarrow dimensions to be determined α_{sensor} from scientific litterature + T - probe calibration

Guen (E.) Thesis Université de Lyon (2020)

$$\square \qquad R_P = f(\overline{T}_{sensor} - T_0)$$

But experimental conditions differing than those during measurements

While measuring a sample the probe is not isothermal

3D FEM modelling of a Pd probe in vacuum conditions

Influencing factors

Simplified Ishikawa's diagram for $S_{th} \propto \Delta R_p \propto \Delta T_P$ FOR A GIVEN PROBE

Analogy with electrical circuit

• Probe electrically heated with an electrical current *I*_p

- T_p can be measured but $T_{p,apex}$? G_l ? $R_{th,t}$? G_c ? $G_{env,ic}$?
- Guen (E.) Thesis Université de Lyon (2020)

Probe in contact with sample (index ic)

$$G_{probe,ic} = P_c / (T_{p,apex} - T_a)$$
$$= R_p I_p^2 / (T_{p,apex} - T_a)$$
$$= G_l + G_{apv,ic} + G_{t,c}$$

$$= \mathbf{G}_{l} + \mathbf{G}_{env,ic} + \mathbf{G}_{t-s}$$

$$\frac{1}{\mathbf{G}_{t-s}} = \frac{1}{R_{th,t} + \mathbf{R}_{th,c} + \mathbf{R}_{th,s}}$$

- More advanced model needed for determining the thermal gradient along the probe
- Calibrations

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

Model – active mode

Determining the thermal gradient along the probe

• 1D and 3D models proposed based on the resolution of the heat equation with a power dissipated in the sensor *P*.

 $P + k_p \Delta T = \rho C_p \frac{dT}{dt}$

k sensor thermal conductivity (W/(m·K)) C_p specific heat capacity (J/(kg·K)) ρ density (kg/m3)

TI 2023, R2770 v2

TO BE CALIBRATED as they depend on geometrical and physical properties of the materials constituting the probe

Calibration:

Fitting measurements with simulations

for a probe out of contact and in different experimental conditions :

- probe temperature,
- electrical current amplitude
- frequency...

P.S.S.A, 212, 477-494 (2015)

$$G_1$$
? $R_{th,t}$? G_c ? $G_{env,ic}$?

 $T_{p,apex}$ while the probe in contact ?

 $G_{env,ic} \rightarrow 0$ W/K in air and vacuum conditions

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

Probe in contact - G_{t-s} – active mode – vacuum conditions

$$\frac{1}{G_{t-s}} = \frac{1}{R_{th,c} + R_{th,s}} \qquad G_{t-s} = \frac{1}{1+s}$$

$$f_{c-s} = \frac{G_c}{1 + G_c / G_s}$$

- Difference in phonon dispersion between the two materials in contact
- Electron-phonon coupling at interface
- Atomic and nanometric roughness of tip and sample
- Possible native oxide

Calibration: Using reference sample(s) with well known thermal conductivity k_s and roughness

How to estimate G_s as a function k_s ?

Constriction in case of bulk samples

$$1/G_s = R_{s,diffusive} + R_{s,balistic}$$
$$= \frac{1}{4 K b k_s} + \frac{4\Lambda}{3\pi b^2 k_s}$$

- ProZh. Eksp. Teor. Fiz. 48, 984 (1965).
- Phys. Soc. London 89, 927 (1966).
- Physical Review B 60, 3963 (1999).

G_c and b crutial parameters for a given model of the probe

Determining b

- Nanocontact mechanical models depending on SThM probes
- Using specific samples

Determining G_c using reference sample(s)

G_c depends on the studied sample

- Approximation G_c constant
- Uncertainty on the measurement to be precised by the user depending on its determination method

Zone	KNT (nm)	WW (nm)
1	104	480
2	72	380
3	72	800
4	110	760

a) 2••:

10 nm in UHV

Thermal conductivity measurement calibration

Calibration, active mode

Journal of Applied Physics, 2020, vol. 128, no 23.

Reference samples with known thermal conductivity, roughness and mechanical property

Using a calibration curve: -

$$\frac{A}{1+B/k_s}+C$$

Picture of some samples (a) S-TH-cal1 and (b) S-TH-cal3

Forum de microscopie à sonde locale-Lyon du 22 au 26 avril 2024

Oxide effect

புத

Lvon 1

Roughness effect

APL, 119(16), 161602 2021

Analysis of Si samples with roughness differing

\rightarrow The roughness induces:

- a thermal conductance decrease between 20 % and 50%
- an increase of standard deviation from 2% for a flat surface to 40% for the roughest samples

Scanning Thermal Microscopy (SThM): Nanoscale thermal measurements

- **1.** Instrumentation and modes
- 2. Influence factors on measurements (simple model) & methodologies used to calibrate the technique
- 3. SThM analysis of a nanostructure: main measurement steps

Small (2023): 2305831.

4. Conclusion and main challenges

Measurement configuration

- Optical and SEM
 observations for
 identification of probe
 components' geometry
 and dimensions
- Electrical measurements to estimate electrical resistance of metallic components

vs. tip height - z

Step fits over these curves used to calculate the K_{eq} at each point along NW

<u>Step 1</u> Temperature calibration in an oven

Step 2: Electrical calibration

FEM solution of the temperature profile of the calibrated KNT probe in operation

Step 3: Fitting experimental data with modeling

Temperature increase at tip apex as a function of overall tip electrical resistance variation ΔR_{SThM}

In each point along the wire

• **NW**: 1D nanostructure:

$$R_{th,NW(y)} = \frac{L}{A\kappa} \left[\frac{1}{4} - \left(\frac{y}{L}\right)^2 \right]$$

From approaches on o bare silicon bulk

Cn

$\circ~$ Pt nanodot on bulk silicon

Thermal conductance $G_{t-s,NW}$ in a given y

• Approaches over a bare section of the NW compared to those performed over a Pt nanodot deposited over the NW

• Conductance increase vs. tip height z for approaches over different deposited Pt nanodots along NW

NW equivalent thermal conductivity k

$$G_{t-s,NW} = \frac{1}{R_{th,c} + R_{th,NW}}$$

$$G_{t-s,NW}(y) = \frac{1}{R_{th,c} + \left[\frac{L}{A\kappa}\left[\frac{1}{4} - \left(\frac{y}{L}\right)^{2}\right]\right]}$$

$$- \text{Fit}$$

$$K = 13.7 \pm 0.8 \text{ W.m}^{-1}.\text{K}^{-1}$$

100 $\nabla \Delta \Delta$ ∇ 10 **This work** 880 \diamond к (W/m·K) \diamond Si Smooth ∇ Rough Theoretical values from < $K = 13.7 \pm 0.8 W.m^{-1}.K^{-1}$ 1. Wang et al. APL 2020 Rough 2. Ohishi et al. Jpn. J. Appl. Phys This work 2015 0.1 -3. Yang et al. Chinese Phys. B. 2020 10 100 1000 φ_{NW} (nm)

Scanning Thermal Microscopy (SThM): Nanoscale thermal measurements

- **1.** Instrumentation and modes
- 2. Influence factors on measurements (simple model) & methodologies used to calibrate the technique
- 3. SThM analysis of a nanostructure: main measurement steps
- 4. Conclusion and main challenges

Small (2023): 2305831.

Conclusion & challenges

Instruments

- Highly sensitive and low-noise electronics required
- Highly controlled environment

SThM allows thermal conductance measurements

• Relevance of the determination of the thermal properties depending on model used

Thermal contact radius and G_c are crutial parameters Physics of G_c still not well-known

Highly sensitive probe required

Conventional SThM calibration (using bulk materials) mainly adapted to the analysis of low thermal conductivity materials

- polymeric materials
- optimized TE materials
- low thermal effective thermal conductivity materials (thin films on substrate)

□ SThM allows measuring low thermal conductance objects (nanowires, suspended membranes...) whatever their thermal conductivity

Whatever the sample studied,

complementary analyses (roughness, microsctructure, geometry ...) needed

Séverine Gomès

CETHIL, UMR5008 CNRS, INSA de Lyon,UCBL1, F-69621, Villeurbanne, France.

Severine.gomes@insa-lypon.fr

Thank you for your attention!

Optical methods

Spatial resolution

- \sim Lateral: 30 μm (PTR), 1 μm (FD-TR)
- ~ In depth: 50 nm (PTR, Up to 50 MHz), 20 nm (FDTR: 1 kHZ-300 MHz; TDTR: 100 MHz-1 THz)

Particularly well adapted for ultrathin film and interfacial resistance measurement

Electrothermal methods

Calibration, passive mode

Surface temperature measurement

Large heater II 200 µm Large gold shield 20 µm Small pold shield

Quantiheat Appl. Note 2017

However, • error not easily measurable $\delta T_p = T_s - T_p = \frac{(T_p - T_a)(R_{th,s} + R_c)}{R_{th,p}}$ $R_{th,s} \text{ sample thermal resistance}$ $R_{th,c} \text{ contact thermal resistance}$ $R_{th,p} \text{ cantilever - environment thermal resistance}$

(b)

 not applicable to nanodevices because sample heating by the sample completly differing mainly due to the air conduction in this case.

Requirement: reference active **nanodevice** with ultra localized heating source

Calibration, passive mode

Active mode – temperature measurement

Measurement of the local Joule and Peltier effects of a self-heated nanowire

Temperature measurement uncertainty estimated at 20%

